
iLeakage: Browser-based Timerless Speculative Execution Attacks
on Apple Devices

Jason Kim
Georgia Tech
Atlanta, USA

nosajmik@gatech.edu

Stephan van Schaik
University of Michigan

Ann Arbor, USA
stephvs@umich.edu

Daniel Genkin
Georgia Tech
Atlanta, USA

genkin@gatech.edu

Yuval Yarom∗

Ruhr University Bochum
Bochum, Germany
yuval.yarom@rub.de

ABSTRACT
Over the past few years, the high-end CPU market has been under-
going a transformational change. Moving away from using x86 as
the sole architecture for high performance devices, we have wit-
nessed the introduction of computing devices with heavyweight
Arm CPUs. Among these, perhaps the most influential was the
introduction of Apple’s M-series architecture, aimed at completely
replacing Intel CPUs in the Apple ecosystem. However, while sig-
nificant effort has been invested analyzing x86 CPUs, the Apple
ecosystem remains largely unexplored.

In this paper, we set out to investigate the resilience of the Apple
ecosystem to speculative side-channel attacks. We first establish
the basic toolkit needed for mounting side-channel attacks, such
as the structure of caches and CPU speculation depth. We then
tackle Apple’s degradation of the timer resolution in both native
and browser-based code. Remarkably, we show that distinguish-
ing cache misses from cache hits can be done without time mea-
surements, replacing timing based primitives with timerless and
architecture-agnostic counterparts based on race conditions. Fi-
nally, we use our distinguishing primitive to construct eviction sets
and mount Spectre attacks, all while avoiding the use of timers.

We then evaluate Safari’s side-channel resilience. We bypass the
compressed 35-bit addressing and the value poisoning countermea-
sures, creating a primitive that can speculatively read and leak any
64-bit address within Safari’s rendering process. Combining this
with a new method for consolidating websites from different do-
mains into the same renderer process, we demonstrate end-to-end
attacks leaking sensitive information, such as passwords, inbox
content, and locations from popular services such as Google.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; Browser security.

KEYWORDS
Spectre, Side-channel attacks, Apple silicon, Timerless channels
ACM Reference Format:
Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom. 2023.
iLeakage: Browser-based Timerless Speculative Execution Attacks on Apple

∗Work partially done while affiliated with the University of Adelaide.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3616611

Devices. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’23), November 26–30, 2023, Copenhagen,
Denmark. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3576915.3616611

1 INTRODUCTION
The ubiquity of computing devices has resulted in the ever-increasing
popularity of web browsers. Indeed, users now consume and create
content directly through the browser, using it as a main access
point to cloud-backed services and infrastructure. This usage pat-
tern makes the browser one of the most important components of
a user-facing computer system, with the browser’s address space
routinely containing sensitive information such as login credentials,
emails, documents, pictures, etc.

With browsers routinely loading and executing JavaScript code
from untrusted sources, many side-channel attacks have used the
browser as a convenient starting point for compromising the system
through its underlying hardware [1, 2, 13, 17, 18, 20, 22, 40–42, 49,
51, 56, 62, 68, 69, 82]. As most attacks rely on the ability to measure
time of microarchitectural events, vendors in turn have attempted
to harden browsers against side channels by severely degrading
available timer resolution [52, 55, 80], as well as limiting the use of
SharedArrayBuffers in some cases [14] to prevent attackers from
crafting a high-resolution timer.

Next, the ever-changing computing landscape has recently re-
sulted in the introduction of high-end Apple silicon devices, aiming
to compete with their x86 counterparts. While there is a plethora
of works analyzing browser-based side channels on Intel and AMD
architectures, the Apple ecosystem remains poorly understood de-
spite its popularity [20, 50, 64, 68, 78]. With the growing popularity
of Apple’s M-series, we investigate the following main questions:

Is the ability to measure time truly critical for mounting microar-
chitectural side-channel attacks? In particular, how can attackers
mount transient execution attacks inside the browser, potentially with-
out relying on any timing primitives? Finally, how resilient are Apple
devices to side-channels? And how can adversaries exploit them?

1.1 Our Contributions
In this paper, we present iLeakage, a speculative type-confusion
attack that can extract information from Apple’s Safari browser. In
particular, we can defeat Apple’s low-resolution timer, compressed
35-bit addressing, and value poisoning countermeasures, allowing
us to read any 64-bit address within the address space of Safari’s
rendering process. Combining this with a new technique for con-
solidating websites from different domains into the same renderer
process, we craft an end-to-end attack capable of extracting sen-
sitive information (e.g., passwords, inbox content, locations, etc.)

1

https://orcid.org/0000-0001-5023-1681
https://orcid.org/0000-0003-4609-7103
https://orcid.org/0000-0003-2720-9288
https://orcid.org/0000-0003-0401-4197
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3616611
https://doi.org/10.1145/3576915.3616611
https://doi.org/10.1145/3576915.3616611

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom

from popular services such as Google. Finally, we note that Safari
/ WebKit is the only browser engine permitted on iOS devices re-
gardless of web browser app. This makes nearly all smartphone
and tablet devices made by Apple susceptible to our attack.

Next, as little is known about transient execution attacks on
Apple devices, before constructing our attack we must first develop
common (and often timerless) side-channel primitives on Apple
silicon. Given the popularity of Apple hardware, and the timerless
nature of our constructions, these might be of independent interest.
Investigating Cache Layout. We begin by investigating the
topology of the cache hierarchy on Apple CPUs. As this information
is not available via unprivileged performance counters, we design a
set of experiments for recovering the total size, associativity, cache
line size, and inclusiveness of Apple’s L1-I, L1-D, and L2 caches.
Measuring Speculation Window. We then proceed to measure
the number of instructions Apple CPUs can execute under spec-
ulation, before the CPU discovers a branch misprediction. Here
we show that modern Apple hardware has deep pipelines, with
speculation windows running as long as 300 cycles.
Distinguishing Cache Misses from Cache Hits. Our next
task is to distinguish cache hits from misses. While this can be
achieved typically by measuring time, Apple has limited the clock
resolution in both native and browser-based environments. Noting
that cache hits and misses result in different sizes of speculation
windows, we present a methodology for replacing timing based
primitives with timerless counterparts based on race conditions.
Using this approach, we are able to reliably distinguish hits from
misses using the native 42 ns timer, Safari’s 1ms timer, Tor’s 100ms
timer, and even without the use of timers altogether. To the best
of our knowledge, this is the first browser-based demonstration of
timerlessly distinguishing cache misses from cache hits, and the
first primitive that does not rely on ISA-specific features.
Constructing Eviction Sets. We then shift to constructing
cache eviction sets. Here, we improve prior work by Vila et al. [79],
presenting a new group testing and backtracking approach which
allows the algorithm to converge within minutes even without
the use of timers. As degrading the timer resolution is often seen
as a countermeasure to eviction set construction, our timerless
technique might be of independent interest.
A Timerless Browser-based Speculative Attack. We combine
all of our above-constructed primitives into a timerless Spectre v1
gadget Proof of Concept (PoC). At a high level, we achieve this by
replacing the cache timing-based method of leaking secrets under
speculation with our gadget for timerlessly distinguishing cache
misses from cache hits. Here, we show that our attacks have near
perfect accuracy, across Safari, Firefox and Tor.
Mounting Transient Execution Attacks in Safari. Next, we
proceed to mount speculative side-channel attacks on the Safari
browser. We begin by abusing Safari’s site isolation policy, demon-
strating a new technique that allows the attacker page to share
the address space with arbitrary victim pages, simply by opening
them using the JavaScript window.open API. We then construct
in-browser eviction sets, side stepping Safari’s timer mitigations.
Finally, we bypass Apple’s compressed 35-bit addressing and value
poisoning countermeasures using speculative type confusion, allow-
ing the attacker to craft and dereference arbitrary 64-bit pointers.

Here, we show that assumptions used when designing architectural
memory safety approaches do not hold true under speculation.
Leaking Sensitive Data. As a final contribution, we demon-
strate the security implications of the techniques we developed
and present end-to-end use cases of our attacks. More specifically,
we show how an attacker webpage can open the target page and
subsequently read information from it. Empirically demonstrating
this, we show recovery of inbox contents and text messages. Next,
applying this technique to password managers such as LastPass, we
exploit the auto-fill feature to leak the target’s Google credentials.
We note that this attack is practical: it depends only on the target
visiting the attacker’s website, and runs to completion on Macs,
iPhones, and iPads in their default configurations.
Summary of Contributions. We contribute the following:
• We study the cache topology, inclusiveness, and speculation win-
dow size on Apple CPUs (Section 4.1, 4.2, and 4.5).

• We present a new speculative-execution technique to timerlessly
distinguish cache hits from misses (Section 4.3).

• We tackle the problem of constructing eviction sets in the case
of low resolution or even non-existent timers, adapting prior
approaches to work in this setting (Section 4.4).

• We demonstrate timerless Spectre attack PoCs with near perfect
accuracy, across Safari, Firefox and Tor (Section 4.6).

• Wemount transient-execution attacks in Safari, showing how we
can read from arbitrary 64-bit addresses despite Apple’s address
space separation, low-resolution timer, caged objects with 35-bit
addressing, and value poisoning countermeasures (Section 5).

• We demonstrate an end-to-end evaluation of our attack, showing
how attackers can recover sensitive website content as well as
the target’s login credentials (Section 6).

1.2 Ethics and Artifact Availability
We initially disclosed our findings to Apple on September 12, 2022.
Apple has acknowledged the issues, requesting an embargo on the
paper’s contents. We have actively discussed countermeasures with
Safari’s development team and maintained contact with Apple’s
Product Security team. Our discussion has resulted in Apple refac-
toring Safari’s multi-process architecture significantly, which we
detail in Section 7. At the time of writing these changes are under
active development, and are available in Safari Technology Preview
versions 173 and newer [58].

2 BACKGROUND

2.1 Caches and Cache Attacks
To bridge the increasing performance gap between the CPU and
main memory, the CPU contains small buffers called caches. These
exploit locality by storing frequently and recently used data to hide
the memory access latency. We primarily focus on recent Apple
Silicon CPUs, which feature a heterogeneous core design with one
or more clusters of high-performance P-cores and energy-efficient
E-cores. While each core type differs in its cache organization, they
have a private L1 cache and a shared L2 cache per core cluster.
Cache Associativity. Typically, these caches are divided into
multiple cache sets that can host up to a certain number of cache
lines or ways or associativity. Part of the virtual or physical address

2

iLeakage: Browser-based Timerless Speculative Execution Attacks on Apple Devices CCS ’23, November 26–30, 2023, Copenhagen, Denmark

is then used to map a cache line to its respective cache set, where
congruent addresses are those that map to the same cache set.

Cache Attacks. By monitoring the target’s cache accesses, an at-
tacker can infer secret information from the target in a shared phys-
ical system. Previous works proposed many different techniques
to perform such attacks, most notably Flush+Reload [23, 24, 86]
and Prime+Probe [15, 30, 34, 47, 56, 59, 61, 74, 79]. Most aforemen-
tioned cache attacks on Intel CPUs have targeted the last-level (L3)
cache, as it is shared among all cores and an L3 cache miss incurs
measurable spikes in latency. We instead target the L2 cache on
Apple CPUs, but for the same rationale.

2.2 Speculative and Out-of-Order Execution

Rather than following the strict program order, modern processors
execute instructions as soon as the required data is available, a con-
cept called out-of-order execution. Furthermore, to handle branches
whose condition is yet to be resolved, the processor attempts to
predict the branch condition, speculatively executing instructions
along the corresponding path. When the condition is eventually
computed, if the branch has been mispredicted, the processor will
revert the speculatively executed computation and will proceed to
execute the correct path instead.

The discovery of Spectre [40] and Meltdown [46] showed that
speculative execution has security implications. Specifically, while
the processor can reverse all architectural effects resulting from
incorrect speculation, microarchitectural effects such as cache and
predictor states are not restored. Transient-execution attacks lever-
age this partial state reversal to extract information not available
otherwise to the attacker, violating the separation between many
mutually-distrusting hardware-backed security domains [6, 8–10,
16, 19, 28, 31, 35, 43, 45, 46, 48, 49, 63, 70, 72, 73, 75–77, 81, 83].

Finally, in concurrent work, Katzman et al. [33] show that spec-
ulative execution can even be used to build logic gates that operate
on the cache state, which in turn can amplify cache attacks.

2.3 Side Channel Attacks on Apple CPUs

While CPUs made by Intel and AMD have received a generous
amount of side channel research attention, much less is known
about side channel vulnerabilities in Apple’s Arm-based A- and M-
series CPUs. More specifically, Shusterman et al. [68] demonstrate
cache capacity attacks on the Apple M1 while Leaky.page [20]
and Hetterich et al. [27] established the feasibility of Spectre v1
exploits on these machines. More recently, the m1racles [50] attack
demonstrated a cross-process covert channel due to insufficient
access control to system registers, while Hot Pixels [71] showed
that data-dependent frequency scaling on GPUs and CPUs enables
pixel stealing and website fingerprinting attacks.

Next, Augury [78] demonstrated the existence of data-dependent
memory prefetching (DMP) on the Apple M1, allowing attackers
to bypass some Spectre countermeasures as well as derandomize
the kernel’s ASLR. Finally, PACMAN [64] shows how attackers can
forge kernel pointer authentication codes (PAC) from userspace to
bypass pointer authentication on M1 CPUs.

2.4 Side Channel Attacks in Web Browsers
Side-channel attacks have also been demonstrated using browser-
based code (e.g., JavaScript and WebAssembly). Indeed, cache at-
tacks runningwithin browser tabs have been used for cryptographic
key extraction [18], monitoring user activity [56, 68, 69], and even to
cause Rowhammer [13, 17, 22]. Next, the data dependency of float-
ing point instructions was also exploited in the browser, in the form
of pixel stealing attacks [2, 41, 42]. Finally, early transient execution
vulnerabilities have also been demonstrated in browsers [40, 49, 51],
prompting large mitigation efforts.
Transient Execution Attacks in Chrome. Following the demon-
stration of the original Spectre [40] attack in JavaScript, Google
attempted to harden Chrome against transient execution attacks.
This effort led to the deployment of site isolation, where websites
originating from different eTLD+1 domains are rendered in different
address spaces (see Appendix A for a more complete discussion).

Leaky.page [20] shows that this hardening is necessary, as attack-
ers can reliably mount Spectre-based attacks on modern versions
of Chrome, albeit being limited to reading specific 4GB heaps in
Chrome’s 64-bit address space. Finally, Spook.js [1] overcomes this
4 GB restriction, allowing attackers to read browser secrets assum-
ing the attacker and victim pages share the same eTLD+1 domains.

In this paper, we show that disclosure of browser secrets is still
possible and practical even with the degradation or removal of
timing sources, through the timerless nature of our primitives. More
specifically, we eliminate the dependency on SharedArrayBuffer-
based timing primitives of Spook.js, shown to have approximately
5 ns resolution [67]. Remarkably, timers with 5 ns resolution are
unavailable even to native code in Apple CPUs, let alone JavaScript
in browsers: we detail this landscape in Section 2.5.
Transient Execution Attacks in Firefox. Transient-execution
attacks have also been demonstrated within modern versions of
the Firefox web browser. Ragab et al. [62] showed how incorrect
results generated transiently by floating point units in Intel and
AMD machines can lead to type-confusion attacks, allowing the
attacker to dereference arbitrary 64-bit pointers. More recently, the
Spring attack [82] exploits mispredictions in the return stack buffer
(RSB) to again demonstrate type-confusion attacks on Firefox.

2.5 Timing Sources on Apple CPUs
A common requirement for mounting microarchitectural attacks is
the capability of measuring the execution time of different instruc-
tions. We now summarize the state of time measuring capabilities
in the Apple and web browser ecosystems.
Timers in Native Environments. Both macOS and iOS allow
privileged native code to read a cycle-accurate timer which is ac-
cessible via the kperf API [5, 44]. However, unprivileged code can
only access the timer provided by mach_absolute_time(), which
PACMAN reported to have a resolution of 24 MHz [64], or 42 ns.
Such a resolution is intractable for microarchitectural side channels,
as most instructions executing in a single-digit number of cycles
while cache accesses completing in the dozens.
Timers inWeb Browsers. With timers being a critical component
for side channel attacks, web browsers typically further restrict the
timer resolution available to browser-based JavaScript code [52, 55,
80]. Here, Google Chrome provides a timer resolution of 100 𝜇𝑠 ,

3

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom

while Mozilla’s Firefox and Apple’s Safari provide a 1ms timer. In
an effort to resist fingerprinting of any sort, Tor Browser further
coarsens the timer to 100ms.

In older browser versions, one could craft a timer with 5 ns
resolution [67] using the SharedArrayBuffer API in JavaScript, in
a manner similar to a counting thread. However, following the use
of high-resolution timers in cache covert channels as part of the
Spectre and Meltdown attacks publicized in January 2018, all major
browser vendors disabled SharedArrayBuffer [14].

Yet, SharedArrayBufferwas conditionally re-enabled in all ma-
jor browsers by December 2021 for webpages served with cross-
origin isolation headers [14], as these aim to mitigate Spectre by
preventing webpages from loading cross-origin content not explic-
itly allowed by the server [39]. See Section 5.1 for implications of
this condition on the Safari browser.

2.6 Timer-Friendly Covert Channels
Transient-execution attacks typically leak values obtained during
incorrect speculation via microarchitectural covert channels. How-
ever, as browser vendors heavily restrict the timer resolution avail-
able to JavaScript code [52, 55, 80], we require a “timer-friendly”
covert channel, which can reliably transmit values from the specu-
lative domain even in the case of degraded timers.
pLRU-based Channel. Early works have resorted to timing
techniques based on the clock edge [21, 41, 67] to overcome this
challenge. More recent work by Google [20] abuses the pseudo least
recently used (pLRU) eviction strategy of L1-D caches to construct
a particularly stable covert channel on Intel and Apple CPUs.

For the remainder of this paper, we abstract the pLRU covert
channel as providing four primitives. plru.init() initializes the
covert channel, and plru.transmit() transmits a bit via some mi-
croarchitectural state. plru.traverse() traverses an L1-D cache
set in a way that this routine will take a longer time to execute
if plru.transmit() had previously transmitted a 1 bit, than if
a 0 bit was transmitted or no transmission happened at all. No-
tably, this timing difference can be amplified significantly to be
observable with a low-resolution timer by performing sufficiently
many traversals over the L1-D cache set, thereby allowing us to
use plru.traverse() to recover the transmitted bit.

Indeed, Listing 1 outlines the recovery procedure, which we
call plru.receive(). It first times plru.traverse with the
low-resolution timer (Line 2). Then, leveraging the amplifica-
tion property, the transmitted value is recovered by compar-
ing plru.traverse’s runtime against a coarse-grained calibrated
threshold in Line 3.

1 function plru.receive() {
2 runtime = badtimer.time(plru.traverse());
3 return runtime > threshold ? 1 : 0;
4 }

Listing 1: Details of the plru.receive function.

Amplification with pLRU. Next, the pLRU strategy can be used
to amplify the outcome of certain race conditions [85], resulting
in the ability to construct eviction sets in the presence of 5 𝜇s
timers on x86 CPUs. Finally, in concurrent and independent work,
Purnal et al. [60] show an improved plru.traverse routine over

an L2 cache set whose elements are congruent to the L1-D cache
set on Intel CPUs, increasing the maximum amplification of the
pLRU-based channel from 500 𝜇s to 5 ms.
Timerless Channels. Disselkoen et al. [15] use Intel’s Transac-
tional Synchronization Extensions (TSX) to mount L3 cache attacks
without a timer. However, TSX has been disabled since 2021, owing
to the discovery of several side-channel security issues [12]. Next,
Zhang et al. [88] observed that some of the newest Intel processors
contain monitoring instructions such as umwait that are exploitable
to build a timerless covert channel. While [88] reported a similarly-
behaved instruction on an Arm Cortex-A73 CPU, it is unknown if
Apple CPUs are susceptible. Moreover, the umwait instructions are
not available to browser-based code.

Stepping away from mounting cache attack, Chen et al. [11]
attempts to protect SGX applications from simultaneous multi-
threading (SMT)-level side channels by ensuring that both threads
are occupied by the applications’ workload. As core scheduling is
not exposed to enclaves, Chen et al. [11] achieves this by inducing
race conditions on L1-cached variables arising from cache coher-
ence, exploiting the fact that the L1 cache is shared among two
sibling threads on Intel machines.

3 THREAT MODEL
In this paper we focus mainly on Apple hardware. For the experi-
ments presented in Sections 5 and 6, we assume that the target has
been fully updated with Apple’s MacOS 13.1 and iOS 16.2 (latest
at the time of writing). In particular, we assume that side-channel
countermeasures are left in their default enabled state and that the
machine has no (known) software vulnerabilities.

Next, for the attacks presented in Section 6, we assume a typical
model for web-based attacks, where the target visits an attacker-
controlled website using the Safari web browser. Here we note that
while macOS-based devices allow the installation of other browsers
(e.g., Chrome), Apple prohibits non-Safari based browsers on iOS
devices. In particular, all browsers installed on iOS devices must
use WebKit as their underlying rendering engine, making nearly
all modern iOS devices vulnerable to our attack.

4 MICROARCHITECTURAL PRIMITIVES
We begin by exploring the status of basic primitives required for
mounting micro-architectural attacks on Apple devices:
[𝒫1] Identifying Cache Organization. We first need to deter-
mine the cache organization on Apple CPUs, as our microarchitec-
tural primitives rely on some of these properties. Thus, we present
a collection of primitives to help uncover the cache organization of
Apple’s Arm-based CPUs without any elevated privileges.
[𝒫2] Measuring Speculation Depth. Another building block
for our microarchitectural primitives is speculation. Knowing the
cache layout allows us to evict data from each cache level, and
subsequently measure the number of instructions that can execute
speculatively before the data becomes reinstated.
[𝒫3] DistinguishingCacheHits FromMissesWithout Timers.
Tackling the degradation of timer resolution as a widespread side-
channel countermeasure, we present a primitive that uses specu-
lation to distinguish cache misses from hits at each level of cache
hierarchy using only low-resolution timers. We then show an im-
proved variant of this primitive that does not use timers at all,

4

iLeakage: Browser-based Timerless Speculative Execution Attacks on Apple Devices CCS ’23, November 26–30, 2023, Copenhagen, Denmark

0

500

L1-I (P-core)

Apple M1

Apple A15 Bionic

Apple A13 Bionic

Apple A12X Bionic

L1-D (P-core)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

500

L1-I (E-core)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

L1-D (E-core)

Ways

A
cc

es
s

T
im

e

0

200

L1-I (P-core)

Apple M1

Apple A15 Bionic

Apple A13 Bionic

Apple A12X Bionic

L1-D (P-core)

27 28 29 210 211 212 213 214 215 216 217
0

200

L1-I (E-core)

27 28 29 210 211 212 213 214 215 216 217

L1-D (E-core)

Stride

A
cc

es
s

T
im

e

Figure 1: The access times when accessing the same offset in a loop for a varying number of pages to determine the ways (on
the left) and the stride (on the right), and thus the size, of the L1-D cache set and the L1-I cache set on the P-cores and E-cores
of various Apple CPUs. The round markers indicate the detected number of ways/stride.

instead using race conditions and shared memory to distinguish
between cache hit vs. miss latencies.
[𝒫4] Constructing Minimal Eviction Sets. We use our cache
distinguishing primitive to develop a method for reliably finding
minimal eviction sets amid the degradation or absence of timers.
We improve on the group-testing eviction set finding algorithm [79]
in ways that add resiliency, allowing us to integrate with [𝒫3].
[𝒫5] Testing for L2 Inclusiveness. We combine [𝒫3] and [𝒫4]
to determine whether the L2 cache is inclusive of the L1 caches.
[𝒫6] Timerless Spectre Attacks. Finally, we demonstrate a
Spectre-v1 gadget that can reliably leak data amid severely degraded
or completely lacking timers.

4.1 [𝒫1]: Cache Organization
We now proceed to reverse engineer the cache topology of Arm-
based Apple CPUs. While kernel extensions can read model-specific
registers to recover this information, doing so on sandboxed iOS
devices is rather challenging. Thus, we now describe our empirical
method to determine the cache topology.
Determining the Associativity of the L1 Cache. Since L1
caches are typically virtually indexed, identical page offsets of mul-
tiple pages are congruent: that is, they map to the same cache set.
To determine the associativity 𝑎, we measure the runtime to loop
through an increasing number of congruent addresses 𝑛, where
a slowdown will occur if 𝑛 > 𝑎. For the L1 instruction cache, we
achieve this using chains of branch instructions which are all at con-
gruent addresses. Figure 1 (left) summarizes our findings, showing
the associativity of the L1 caches on various Apple CPUs.
L1 Cache Size. To parallelize address translation with cache
lookups, L1 caches typically limit the indexing bits to the page offset
bits. With Apple CPUs using 16KiB pages, we can upper-bound the
size of the L1 cache, 𝑠 , as 𝑠 ≤ 16KiB · 𝑎. Next, cache designs often
try to avoid self-eviction of blocks of continuous memory. Thus, we
first allocate a block of size 16KiB · 𝑎, and repeatedly access 𝑎 + 1
elements from it using a given stride 𝛿 . We keep doubling 𝛿 until
we observe a slowdown, indicating the presence of self-evictions.
Figure 1 (right) presents the access time across different strides.
As the largest stride with fast access times, 𝛿∗, still allows 𝑎 + 1
elements to map to different sets, each cache way has 𝛿∗ capacity.
Thus, the size of the entire cache is 𝑠 = 𝑎 · 𝛿∗.
L1 Cache Line Size. To determine the cache line size, we loop
through 𝑛′ congruent addresses, where 𝑛′ > 𝑎 and causes a slow-
down. Then, we shift 𝑛′

2 addresses by an increasing offset. The

smallest value of this offset where we observe a relative speedup is
the cache line size 𝑙 , since it will result in 𝑛′

2 addresses mapping to
the next line, and thus the next cache set. Finally, once 𝑙 is known,
we can compute the number of sets 𝑡 , since 𝑡 = 𝑠

𝑙𝑎
.

L2 Cache Organization. The sysctl interface on macOS and iOS
provides the line size 𝑙 and total size 𝑠 of the L2 cache. However, as
the L2 cache is physically indexed and we therefore cannot retrieve
𝑎 or 𝑡 here, we rely on the ability to find minimal eviction sets, as
its size must equal 𝑎. We detail this in Section 4.4.

Experimental Results. Running the above methodology across
multiple iOS and MacOS devices, we were able to recover and
document the organization of the L1 caches. Table 1 presents a
summary of our findings across multiple generations of Apple
CPUs, both for P-cores and E-cores.

4.2 [𝒫2]: Measuring Speculation Depth

Knowing the cache organization on modern Apple platforms, we
now measure the number of instructions that can execute specula-
tively, also known as the speculation window length. We hypothe-
size that speculated branches will resolve much quicker when the
data is in the L1 cache than the L2 cache or main memory.

Measuring L1 and L2 Speculation Depth. We use the cycle-
accurate timer described in Section 2.5 to evict a series of values
determining the condition of a branch instruction, thereby open-
ing a speculation window. At the branch target, we introduce a
sequence of data-dependent mul instructions followed by a load in-
struction for an uncached probe element. Here, we hypothesize that
if we introduce enough mul instructions, the speculation window
will be too short to reach the load instruction when the data is in
either the L1 or L2 cache. Accordingly, we conduct an experiment
where we evict the branch condition from the L1 and L2 caches, exe-
cute the branch, and measure the load latency to the probe element
to determine how many mul instructions we need to introduce. We
perform 1,000 trials for each number of mul instructions.

Results. Figure 2 shows the number of mul instructions that we
can introduce before the probe element remains uncached. While
each platform is different, we see that Apple’s M series CPUs can
execute about 100 mul instructions under speculation. With each
mul requiring 3 cycles [32], this translates to speculative windows
of about 300 instructions on high-end Apple platforms.

5

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom

L1-I Cache L1-D Cache L2 Cache
Name CPU W S Size CL W S Size CL W S Size CL
MacBook Air (M2, 2022) M2 (P) 6 512 192 KiB 64B 8 256 128 KiB 64B 16 8192 16 MiB 128B
(Mac14,2) A2681 M2 (E) 4 512 128 KiB 64B 8 128 64 KiB 64B 16* 2048* 4 MiB 128B
MacBook Pro 14" M1 Max (P) 6 512 192 KiB 64B 8 256 128 KiB 64B 12 8192 12 MiB 128B
(MacBookPro18,4) A2442 M1 Max (E) 8 256 128 KiB 64B 8 128 64 KiB 64B 16* 2048* 4 MiB 128B
MacBook Pro 14" M1 Pro (P) 6 512 192 KiB 64B 8 256 128 KiB 64B 12 8192 12 MiB 128B
(MacBookPro18,3) A2442 M1 Pro (E) 8 256 128 KiB 64B 8 128 64 KiB 64B 16* 2048* 4 MiB 128B
Mac Mini (M1, 2020) M1 (P) 6 512 192 KiB 64B 8 256 128 KiB 64B 12 8192 12 MiB 128B
(Macmini9,1) A2348 M1 (E) 8 256 128 KiB 64B 8 128 64 KiB 64B 16 2048 4 MiB 128B
iPhone 13 mini A15 Bionic (P) 6 512 192 KiB 64B 8 256 128 KiB 64B 12* 8192* 12 MiB 128B
(iPhone14,4) A2481 A15 Bionic (E) 4 512 128 KiB 64B 8 128 64 KiB 64B 16* 2048* 4 MiB 128B
iPhone 12 A14 Bionic (P) 6 512 192 KiB 64B 8 256 128 KiB 64B 16 4096 8 MiB 128B
(iPhone13,2) A2172 A14 Bionic (E) 8 256 128 KiB 64B 8 128 64 KiB 64B 16* 2048* 4 MiB 128B
iPhone 11 A13 Bionic (P) 6 512 192 KiB 64B 8 256 128 KiB 64B 16 4096 8 MiB 128B
(iPhone12,1) A2111 A13 Bionic (E) 6 256 96 KiB 64B 6 128 48 KiB 64B 16* 2048* 4 MiB 128B
iPad Pro 11" A12X (P) 8 256 128 KiB 64B 8 256 128 KiB 64B 16 4096 8 MiB 128B
(iPad8,3) A2013 A12X (E) 6 128 48 KiB 64B 4 128 32 KiB 64B – – 2 MiB 128B
iPad 6th Gen (iPad7,5) A1893 A10X Fusion 4 256 64 KiB 64B 4 256 64 KiB 64B † † 3 MiB 128B
iPhone 7 Plus (iPhone9,4) A1784 A10 Fusion 4 256 64 KiB 64B 4 256 64 KiB 64B † † 3 MiB 128B

Table 1: The cache organization of various Apple CPUs. W: Ways, S: Sets, CL: Cache Line size. –: the pLRU-based minimal
eviction set algorithm did not resolve, and we could not confirm using an alternative information source. †: these devices use a
random replacement policy for the L1 cache [25], precluding us from using the eviction set algorithm. *: we could not confirm
the results, but these are the most likely based on other Apple CPUs with similar cache organization.

Figure 2: The number of mul instructions that can be executed
speculatively when the condition is evicted from the L1 cache
(dashed) vs. the L2 cache (solid) on various CPUs.

4.3 [𝒫3]: Discerning Cache Hits From Misses
In this section, we consider the problem of discerning cache hits
from misses in timer-restricted environments. Recall that in non-
privileged environments, we cannot rely on high-resolution timers
to achieve this for individual addresses. A solution to this prob-
lem is also suitable for other environments with restricted timer
resolution, such as all web browsers (see Section 5), and is thus of
independent interest. We first describe a primitive to discern cache
hits from misses at each cache level, using speculation to make
measurement possible with only low-resolution timers. We further
extend this gadget to a timerless variant, which is made possible
by race conditions instead of timing data.
Constructing a Distinguisher Using Speculation. We now
combine the speculation depth information for each cache level
from Section 4.2 with the pLRU gadget as described in Section 2.6 to
construct a distinguisher gadget that can tell whether the data for
a given address is present or not in a specific level (L1 or L2) of the
cache hierarchy. The distinguisher gadget resembles our setup for
measuring speculation depth. More specifically, it speculates on a
conditional branch, where this time the condition is the target data
to be measured. The branch target begins with the number of mul
instructions corresponding to the cache level to measure, where
this number is derived from our results in Figure 2. Afterwards,
instead of loading an uncached probe element, the gadget transmits

a 1 using the pLRU gadget. That is, a 1 will be transmitted only if
the target data is not present in the cache level being measured.

1 plru.init()
2 if (*target != 0) {
3 x *= 1;
4 ... // target cached - speculation ends here
5 x *= 1;
6 plru.transmit(1);
7 // target not cached - speculation ends here
8 }

Listing 2: Our speculation-based gadget to distinguish cache
hits from misses in the absence of high-resolution timers.

Gadget Overview. Listing 2 is the pseudocode of our distin-
guisher gadget. After initializing the pLRU channel (Line 1), we
branch on the value of the address to which target points (Line 2).
If the CPU reaches Line 6 under speculation, the pLRU gadget trans-
mits a 1, indicating a cache miss. Otherwise, the address to which
target points is a cache hit, and no transmission occurs because
speculation ends before Line 6.

Next, if a low-resolution timer is available, we can use it to
measure the execution time of plru.traverse() in an attempt to
ascertain whether a transmission had occurred inside our distin-
guisher gadget:

is_cache_miss =
badtimer.time(plru.traverse()) > threshold;

While this is similar to plru.receive from Listing 1 in that we
time plru.traverse with a low-resolution timer against a coarse-
grained threshold, we note that the resulting value now directly
corresponds to the target’s cache state. That is, plru.traverse’s
runtime only exceeds threshold in case Line 6 was speculatively
executed due to a prolonged speculation window induced by a
cache miss in Line 2.
Measuring Without Timers via Race Conditions. We recall
from Section 2.6 that plru.traverse allows one to arbitrarily am-
plify L1 miss latencies, making them visible using low-resolution

6

iLeakage: Browser-based Timerless Speculative Execution Attacks on Apple Devices CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Figure 3: An overview of how our race condition-based gadget
runs to distinguish cache hits from cache misses.

timers. We now use this amplification property to remove the need
for a timer altogether, allowing our gadgets to operate in a timerless
environment. At a high level, we race two threads that update a
shared variable, such that we can determine the order in which the
threads finished running. Figure 3 outlines our gadget, where the
syntax # is used to describe each part of the figure in detail.

Our race consists of a zero-initialized shared variable 1 , a ref-
erence thread, and a main thread. The reference thread 2 always
executes a chain of data-dependent instructions, and then writes 1
3 to the shared variable. The main thread 4 starts concurrently,
runs the distinguisher gadget in Listing 2, calls plru.traverse,
and then reads the shared variable, outputting the result.

We now argue that after calibrating plru.traverse, the output
of themain thread in fact corresponds to the cache state of the target
variable. More specifically, if the target data is not cached, the CPU
has a long speculation window for our distinguisher gadget in
Listing 2, reaching plru.transmit(1) 5 under speculation. This
causes the subsequent plru.traverse routine 6 to take longer,
finishing after the reference thread has written 1. Therefore, the
main thread reads 1 7 in this case.

In contrast, if the target data is cached, the CPU only has
a short speculation window in Listing 2, never reaching the
plru.transmit(1) operation. Next, as nothing is transmitted over
the pLRU channel, the plru.traverse routine terminates quickly
8 . With the race results being flipped, this causes the main thread
to read 0 before the reference thread can write 1. 9
Experimental Results. We now evaluate how accurately the
distinguisher gadget classifies four outcomes: hits andmisses, on the
L1 and L2 caches. Table 2 summarizes our findings, as we degrade
the timer resolution on an Apple M1 machine from an unprivileged
42 ns timer to removing the timer altogether. As can be seen, we
observe perfect discernment even with a timer resolution of 1 ms.
The timerless version likewise achieves high accuracy, particularly
for distinguishing L2 hits from misses.

Timer Resolution 42 ns 10 𝜇𝑠 100 𝜇𝑠 1 ms Timerless
L1 Hit 100% 100% 100% 100% 82%
L1 Miss 100% 100% 100% 100% 77%
L2 Hit 100% 100% 100% 100% 99%
L2 Miss 100% 100% 100% 100% 97%

Table 2: Probability of a correct observation (out of 1000 runs)
by our distinguisher gadget, across various timer resolutions.

4.4 [𝒫4]: Constructing Minimal Eviction Sets
Now, we use our distinguisher gadget to find minimal L2 eviction
sets from an unprivileged user, even in environments that only
provide low-resolution timers, or no timer at all. As browser-based
code does not have access to any cache flush instructions, finding
minimal eviction sets in timer-restricted environments is a common
side-channel task, making this technique of independent interest.
Baseline Approach of [79]. Eviction set finding begins with an
inflate step, where we keep allocating and accessing elements until
the victim address is evicted. Its output is called a conflict set, and
the goal is to reduce it to a minimal eviction set (i.e., whose size
is the cache’s associativity 𝑎). Vila et al. [79] use group testing to
expedite reduction, assuming 𝑎 is known. In each iteration, their
algorithm divides the conflict set into 𝑎 + 1 bins, withholds one bin
at a time, and checks if the remaining bins still evict the victim. If so,
the withheld bin is discarded, and the remaining bins become the
conflict set for the next iteration. Due to the Pigeonhole principle,
there are ≥ 1 bins that can be discarded each iteration from a
conflict set of size 𝑛. Hence, the algorithm discards 𝑛

𝑎+1 elements
per iteration until 𝑛 = 𝑎.
Improving the Reduction. We improve this technique by gener-
alizing it to operate on an upper bound 𝑘 of 𝑎, rather than the exact
number of ways. Then, during each iteration, we divide the conflict
set into 𝑘 bins instead of 𝑎 + 1 bins. We deviate from [79] by testing
the remaining bins after discarding a bin, instead of starting the
next iteration. This lets the next iteration start with the minimal set
of bins required for eviction. We note that in the case 𝑘 is large (i.e.,
64), most bins are redundant. Thus, our reduction removes 𝑘 − 𝑎

bins on average per iteration, instead of just one.
Improving the Backtracking. Noise sometimes causes the
reduction step to remove bins that are essential for eviction. [79]
remediates this with a backtracking step that adds the last removed
bin back to the conflict set. However, we found this approach is
still susceptible to noise, especially when used with the speculation-
based distinguisher gadget from Section 4.3, and often the algorithm
fails to converge. We improve this by reallocating as many of the
previous elements until the conflict set evicts the victim again.
Empirical Results. We first implement both [79] and our algo-
rithm using the privileged cycle-accurate timer to time the victim’s
load latency as a baseline, and measure the time to convergence and
success probability over 20 trials on an Apple M1. Here, we define
success as the resulting eviction set being minimal and able to evict
the victim. We then introduce the distinguisher gadget and use it
alongside coarser timing sources, starting with the unprivileged
timer in macOS with 42ns resolution and ending at no timer (for
the latter, we use the variant with race conditions). We present
the results in Figure 4. While our reduction algorithm’s time to
convergence is longer, it eliminates false positives (i.e., when the
reduction converges but the resulting eviction set fails to evict the
victim) for all timer resolutions except when the timer is removed.

4.5 [𝒫5]: Testing for L2 Inclusiveness
With the ability to efficiently and reliably find minimal L2 eviction
sets, we now ascertain that the L2 cache is inclusive. Otherwise, the
L2 cache is non-inclusive or exclusive. We test for inclusiveness using
an L2 eviction set and the distinguisher gadget from Section 4.3.

7

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom

Figure 4: Comparison of eviction set-finding algorithms (ours
and [79]) across degrading timer resolutions.

We check if traversing the L2 (shared per-cluster) eviction set leads
to L1 (private) cache evictions in another core. That is, we expect
to observe cross-core L1 evictions only if the cache is inclusive.
Indeed, we find that the L2 cache of the Apple M1 is inclusive of
the L1 caches. Furthermore, given that the L2 cache line size (128
B) is double that of L1 (64 B), we observe improved eviction rates
when accessing both halves of each L2 cache line.
Experimental Setup. Noticing the discrepancy in cache line sizes
between the L1 and L2 caches, we design experiments to determine
if this affects their inclusiveness. In our first three experiments,
we access the whole L2 cache line, the first 64 bytes, and the last
64 bytes respectively during the eviction test, and measure the L1
eviction rate of the victim (which is cached in another core’s L1). As
a control, our fourth experiment evicts an unrelated L2 cache set,
which should leave the victim’s L2 cache line intact. Subsequently,
we measure the effect of repeated eviction set traversals. We use a
spinlock to synchronize the attacker’s thread with the victim thread,
wherein the attacker’s thread shuffles and traverses the eviction set
1, 2, or 3 times before yielding to the victim thread.
Results. We show the cross-core L1 eviction rates in Figure 5.
Here, we observe from the first three columns that while accessing
half of an L2 cache line occasionally results in evictions, accessing
both halves approximately triples the success rate. We also ver-
ify that evicting a different L2 cache set does not result in victim
evictions. For the experiments with synchronization, we observe
that accessing the eviction set more often results in higher eviction
rates, with 3 access iterations guaranteeing eviction. Overall, our
results strongly indicate that the M1’s L2 cache is inclusive.

Figure 5: L1 cache eviction rate of a victim when evicting its
L2 cache line from another core on the Apple M1 CPU.

4.6 [𝒫6]: Timerless Spectre Attacks
We recall from Section 2.5 that all major web browsers have de-
graded their timer resolution in an attempt to harden browsers

against side-channel attacks [52, 55, 80]. In fact, browser vendors
has gone as far as to restrict the use of SharedArrayBuffers, in
an effort to stop attacks from building their own timers [14]. While
concurrency and shared state continues to be available through
web workers and the message passing API [67] due to compati-
bility reasons, the latency of these interfaces has been artificially
increased to be orders of magnitude greater than that needed to
distinguish a single cache miss from a hit.

Building on our timerless attack primitives presented earlier, we
are able to use the browser’s message passing API to cause race
conditions, allowing us to execute the cache-distinguisher method
from Section 4.3. We then construct a timerless browser-based
Spectre v1 gadget, using race conditions rather than cache timing
to recover the secrets leaked during speculative execution.

Table 3 shows accuracy and leak rate for a proof-of-concept
timerless Spectre-v1 attack using this approach, benchmarked on
an Apple M1 laptop running unmodified Safari 16.2, Firefox 108.0,
and Tor Browser 12.0.1 (all latest at the time of writing). While
the attack’s leak rate is relatively low due to noise introduced by
the JavaScript environment, we note the attack achieves close-to-
perfect accuracy without any explicit or constructed timers.

Metric Tor Browser Firefox Safari
Accuracy 96.15 % 98.79 % 97.46 %
Leak Rate 10.63 b/s 10.76 b/s 8.26 b/s

Table 3: Timerless Spectre-v1 performance across browsers.

5 ATTACKING THE SAFARI BROWSER
We now present iLeakage, a JavaScript-based transient-execution
attack that recovers secret information from the Safari browser.
In addition to bypassing standard side-channel countermeasures
(such as a low-resolution timers) deployed by all browser vendors,
iLeakage overcomes several Safari- and Apple-specific challenges.
[𝒞1] Site Isolation. Just like Chrome and Firefox, modern versions
of Safari attempt to prevent mutually-distrusting webpages from
using the same rendering process, compartmentalizing different
websites into different address spaces.
[𝒞2] 35-bit Pointers and Value Poisoning. In addition to site
isolation, Safari also limits the attacker’s ability to craft and derefer-
ence arbitrary 64-bit pointers. All indexing in JavaScript objects is
32-bits and most object accesses entail 35-bit compressed pointers,
while 64-bit doubles are poisoned. Thus, an attacker must bypass
Apple’s isolation countermeasures to retrieve sensitive information.
[𝒞3] Obtaining Deep Speculation. To overcome [𝒞2], we use
speculative type confusion that requires the CPU to speculate past
multiple condition checks. Thus, we need a consistent method to
ensure that the CPU does not revert the speculation before the
attack completes executing transiently and leaks the sensitive data.
[𝒞4] Reliability. Finally, we design a reliable exploit that can be
used to leak data multiple times. In particular, we need to architec-
turally hide all the type confusion events to prevent the browser
from raising exceptions or falling back to the JavaScript interpreter.
AttackOverview. Wefirst resolve [𝒞1] by using the window.open
JavaScript function, observing that it brings the target website’s
data into the attacker’s address space in Safari. For [𝒞2], we forge
64-bit pointers around value poisoning countermeasures via Safari’s
performance optimization within its mitigations for architectural

8

iLeakage: Browser-based Timerless Speculative Execution Attacks on Apple Devices CCS ’23, November 26–30, 2023, Copenhagen, Denmark

type confusion. We show this mitigation is insufficient for specu-
lative type confusion, with the CPU transiently dereferencing our
forged pointer. For [𝒞3], we inspect Safari’s memory allocator and
data structures for JavaScript objects to selectively evict the type of
our attacker object from the L2 cache, but keep the rest of the object
in the L1-D cache. Finally, for [𝒞4], we hide the type mismatch
events from Safari with another layer of speculation.

5.1 [𝒞1]: Bypassing Process Isolation
To mount a speculative execution attack, the attacker must coerce
the target webpage into its address space. Recognizing this, both
Chrome and Firefox recently implemented a Site Isolation para-
digm [53, 66] to ensure that different rendering processes handle
pages with different effective top-level domain plus one sub-domain
(eTLD+1). See Appendix A for a more complete discussion.
Safari’s Isolation Model. Taking this approach a step further,
Safari follows a simple one process per tab model, where two web-
pages are never consolidated into the same rendering process, even
under high memory pressure and even if they share an eTLD+1 in
their URLs. Instead, Safari spawns a new rendering process for each
tab until the system runs out of memory. Empirically confirming
this, we used a MacBook Air with an M1 CPU and 16GB of RAM
and opened 177 tabs. While this had the effect of Safari refusing to
open additional tabs, it never consolidated webpages into rendering
processes, maintaining its one process per tab model. Similar results
were obtained on an iPad Pro (12.9-inch, 5th generation).
Abusing window.open to Achieve Consolidation. Despite
newly opened tabs failing to consolidate, we found that we can
reliably render a target page inside the address space of an at-
tacker’s page by using the window.open JavaScript API. In particu-
lar, attacker.com can call window.open to open a pop-up window
rendering target.com. Crucially, while both websites appear in
different windows, Safari uses a single rendering process for both
pages, causing both websites to end up in the same address space.
Notably, websites cannot refuse window.open to render them in a
separate window, making this technique applicable for any target
website. Finally, while we also observe cross-origin iframes consol-
idating, WebKit’s Intelligent Tracking Prevention countermeasure
prevents the delivery of cookies to cross-origin iframes [84], pre-
cluding them from rendering secrets.
Unavailability of SharedArrayBuffer. We recall from Sec-
tion 2.5 that the SharedArrayBuffer API can be used to build
high-resolution timers. However, to mitigate side channels, all ma-
jor browsers now limit its availability to cross-origin isolated pages.
Notably, we observe that cross-origin isolated webpages fail to con-
solidate in Safari with any other webpage using either technique.
In turn, this implies we cannot use SharedArrayBuffer to craft a
high-resolution timer for our attack. Accordingly, we use the pLRU
covert channel described in Section 2.6.

5.2 [𝒞2]: Speculative Type Confusion
As outlined in Appendix B, despite being a 64-bit application, Safari
uses 32-bit array indices and 35-bit pointers to the underlying stor-
age of most objects, partitioning them into 32GB compartments
named Gigacages. As secrets in a webpage’s DOM are located out-
side this Gigacage, they remain out of reach for naïve Spectre at-
tackers that can only corrupt 32-bit indices or 35-bit pointers.

Figure 6: Memory layout of JavaScript strings inWebKit. The
JSCell class is common to all objects, while the StringImpl
class is the backing store specific to strings.

In this section we overcome this countermeasure, building a
speculative type confusion attack which can read arbitrary 64-bit
addresses in the page’s rendering process. While we acknowledge
prior type confusion techniques against Chrome [1, 26, 51] and
the Linux kernel [36], to the best of our knowledge this is the first
application of speculative type confusion to Apple’s ecosystem in
general and the Safari web browser in particular.
Locating 64-bit Pointers. We begin our investigation of specu-
lative type confusion attacks in Safari by inspecting the memory
layout of common JavaScript objects, paying special attention to
64-bit pointers. A particularity convenient object containing a 64-
bit pointer is JavaScript’s string object, whose memory layout
we show in Figure 6. As can be seen in Figure 6 (bottom), WebKit
writes characters in a separate C-style array, and dereferences a
64-bit C-array pointer to access it (Figure 6 (middle), StringImpl).
Performing a String Indexing Operation. More specifically,
Listing 3 contains pseudocode of JavaScript’s string indexing op-
eration, when compiled by WebKit’s JIT compiler. The code takes
as input a variable inp, a WebKit metadata object called JSCell,
common to all JavaScript objects. Having verified that the type
inside inp indeed corresponds to a string (Line 3), Listing 3 pro-
ceeds to retrieve the corresponding StringImpl structure (Line 6),
a WebKit internal structure holding the string’s length and a 64-bit
pointer to the string’s actual content. After checking that the index
being referenced is smaller than the string’s actual length (Line 8),
Listing 3 retrieves the corresponding character by dereferencing
the 64-bit cArrayPtr (Line 11).

1 String::operator[] (inp, index) {
2 // Check StructureID first
3 if (inp.StructureID != String::StructureID)
4 exitToInterpreter();
5 // Dereference ptr to get StringImpl
6 StringImpl impl = *(inp.ptr);
7 // String length check
8 if (impl.length <= index)
9 exitToInterpreter();
10 // Dereference ptr to C-array
11 return *(impl.cArrayPtr + index);
12 }

Listing 3: JIT-compiled WebKit string indexing operation.

Attacker Object Setup. We assume the attacker would like to
dereference some 64-bit address addr. Then, the attacker has to cre-
ate an object whose memory layout resembles that of a JavaScript

9

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom

Figure 7: NaN-boxing in WebKit JSValues to discern data
types. The bit patterns that indicate each data type are col-
ored in red, while x marks attacker-controllable bits.

string. As objects must support heterogeneous property types, We-
bKit implements this by making every property a JSValue class.
Conveniently, each JSValue is 64 bits wide. However, in order to
craft a JSValue whose value holds addr, the attacker needs control
over all 64 bits. This is not trivial, as some of JSValue’s 64 bits
are patterned by WebKit to indicate which property type it holds.
Aside from references to other JavaScript objects (which are always
the attacker’s own data), an attacker can only fill JSValue with
integers, floats, True, False, Undefined, and null values. Figure 7
indicates the bit pattern corresponding to each value.
Value Poisoning via NaN-boxing. Using bit patterns to indicate
different property typeswithin a fixed-width datatype is a technique
known as NaN-boxing. Remarkably, in WebKit’s implementation
of NaN-boxing, bits 63-48 are non-zero for integers. Furthermore,
WebKit uses the IEEE 754 double-precision format [29] to represent
floats. While this format requires control over all 64 bits, WebKit
adds a poison value of 249 to the encoded bits, making bit 49 or
higher always set in memory. In both cases, the 64 bits comprising
the JSValue can never represent canonical virtual addresses. For
all other property types, most bits are zeroed out such that they
cannot be used to read arbitrary locations in the address space.
Hence, these bit patterns not only serve as delineating sequences
for property types, but also as a countermeasure against forging
pointer values for architectural type confusion.
Bypassing Value Poisoning. While adding 249 prevents archi-
tectural type confusion, it requires performing arithmetic every
time when computing on a float for poisoning and unpoisoning.
Therefore, if an object contains an array of floats, WebKit performs
a performance optimization by marking this information in the
object’s type instead of individually poisoning each float. Hence, to
avoid poisoning the attacker must create an object with an array of
floats, computing the inverse of the IEEE 754 encoding in order to
convert the bits of addr to a valid float. Likewise, the attacker must
provide a valid number for a string’s length variable, which over-
laps with the lower 32 bits of the indexable property at index 0. See
Figure 8 (top) for an initialization example, where the ieee754-inv
function performs this conversion (i.e., from bits to floats).

Architecturally, WebKit’s type checking mechanism prevents
unpoisoned floats from being interpreted as pointers when this
optimization is applied. However, when the CPU speculates past
type checks, we show that this security guarantee fails to hold.
Attacker Object Memory Layout. We show the memory layout
of the attackerObj class after running the code in Figure 8 (top) in
Figure 8 (bottom), along with the memory layout of a string. At the
JSCells for the two objects, we note the pointers to the underlying
storages (StringImpl Ptr and Butterfly Ptr) are at an offset of

1 let attackerObj = {};
2 // [0] partially overlaps with length
3 attackerObj[0] = ieee754-inv(0xffff);
4 // [1] overlaps with C-array ptr
5 attackerObj[1] = ieee754-inv(addr);

Figure 8: (Top) Pseudocode to construct a malicious object for
transiently dereferencing the target address addr. (Bottom)
A comparison with the memory layout of a string object.

eight bytes in both cases. In the underlying storage containing an
array of floats, Line 3 of Figure 8 (top) puts the value 0xffff at
offset 4 (after IEEE 754 conversion) where the string length resides,
and line 5 puts the target address addr at offset 8, which contains
the C-array pointer in the string.
Dereferencing Arbitrary 64-bit Pointers via Speculative Type
Confusion. To dereference the 64-bit pointer, we consider the
case where the code in Listing 3 is executed on the attackerObj
created in Figure 8 (top) with index=0. Before this code executes,
we evict the StructureID of our object from the cache to delay the
resolution of the branch at Line 3. This essentially forces the CPU
to speculate forward, derefencing the object’s butterfly pointer and
treating the resulting butterfly as a StringImpl structure (Line 6).
Next, the CPU incorrectly uses the data in attackerObj[0] as the
string length (Line 9). As the string length is 0xffff, which is larger
than index, the CPU bypasses the branch and incorrectly uses the
data in attackerObj[1] as the string’s cArrayPtr, derefences it
and returns the resulting value under speculation.
Type Eviction. To ensure the type confusion attack succeeds, we
delay the resolution of the branch in Line 3 of Listing 3 as much
as possible by evicting the cache line holding the StructureID.
However, this poses two challenges. First, the attacker must be
able to construct eviction sets for a given address, overcoming
Safari’s 1ms timer. Next, the attacker must keep the rest of the data
of the attackerObj cached to prevent the CPU’s pipeline from
stalling. Overall, tomeet both requirements, wemust forceWebKit’s
internal memory allocator to place the attackerObj across cache
line boundaries at particular offsets.

5.3 [𝒞3]: Partial Object Eviction
As outlined above, our type confusion primitives requires placing
an attackerObj across cache line boundaries, such that we can
evict its StructureID variable while retaining the rest of the object
in the CPU’s cache. Next, to evict the StructureID, we must find a
methodology for evicting specific addresses from the CPU’s cache.

10

iLeakage: Browser-based Timerless Speculative Execution Attacks on Apple Devices CCS ’23, November 26–30, 2023, Copenhagen, Denmark

This implies bypassing Safari’s 1ms timer, in order to distinguish
cache misses from cache hits.
Understanding Safari’s Memory Allocator. We depict the
ideal scenario from above in Figure 9. Unfortunately, we observe
that WebKit’s memory allocator always places JavaScript objects,
such as attackerObj, at 16-byte boundaries. Next, we note that
most Intel and AMD CPUs use 64-byte cache lines while recent
Apple CPUs use 128-byte cache lines in their L2 cache. Thus, we
cannot evict the attackerObj’s StructureIDwithout also evicting
its butterfly pointer, preventing our attack.

Figure 9: Ideal placement of the JSCell, with a new cache
line between StructureID and Butterfly Ptr.

Constructing Split Objects. Inspecting WebKit’s memory alloca-
tor, we find a performance optimization where for certain built-in
objects in the JavaScript API, the first 8 instances for each object
type are ‘half-aligned’, using 8-byte alignment boundaries.

While user-defined attackerObj do not qualify for this opti-
mization, Intl.Locale objects do qualify for such placement. See
Figure 10. Next, although Intl.Locale stores region-specific in-
formation (e.g., fonts, numbering system, calendar, etc), JavaScript
allows us to set its indexed properties to floats, facilitating type
confusion. Finally, when WebKit places such objects on 8-bytes, the
StructureID and butterfly pointer land on adjacent caches line for
some of these objects, as the JSCell structures are 168 bytes.

Figure 10: Comparison of memory offsets between a string
object and an Intl.Locale object whose JSCell class is split
across cache lines, and whose indexed properties mimic the
backing store of a string object. We use the latter for specu-
lative type confusion.

Achieving Cache Evictions. A final prerequisite to mount our
type confusion attack is the ability to evict the address holding
the StructureID of an Intl.Locale object. While Safari’s 1ms
timer prevents the attacker from distinguishing cache hits from
misses, thus constructing eviction sets, we recall the technique
from Section 4.4 for constructing eviction sets using only low-
resolution timers. Porting a similar approach to Safari, we can evict
StructureIDs of these objects, thereby facilitating our attack.

5.4 [𝒞4]: Speculative Suppression
Having demonstrated how to achieve type confusion between
JavaScript’s Intl.Locale and String objects while making the
Intl.Locale’s JSCell object straddle two cache lines, we now
describe our memory read primitive end-to-end in Listing 4.

1 let malObj = new Intl.Locale("en-US");
2
3 for (let i = 0; i < 10000; i++)
4 gadget(0, 0, "training");
5
6 const junk = malObj[1];
7 malObj = [ieee754-inv(0xffff), ieee754-inv(addr)];
8 evict_type(malObj);
9 plru.init();
10 gadget(0xffff, index, malObj);
11 return plru.receive();
12
13 function gadget(condVar, index, confusionObj) {
14 if (condVar < confusionObj.length)
15 let val = confusionObj[index];
16 plru.transmit(val);
17 }

Listing 4: Our speculative type confusion primitive.

Setup. As our attack relies on speculatively performing type con-
fusion between Intl.Locale and String objects, Line 1 allocates
the malObj of type Intl.Locale, whose JSCell is split between
cache lines as outlined in Figure 10.
Training. We call gadget() 10,000 times (Lines 3 – 5) with
condVar and index set to 0, and confusionObj set to “training”
to train the branch predictor. As condVar is less than 8, the CPU
executes the branch, which sets val to ‘t’ and transmits ‘t’ over
the pLRU channel (Line 14 – 16). By passing a string to the gadget
function repeatedly, Safari consequently specializes the access at
Line 15 to use the JIT-compiled code from Listing 3 instead of
processing Line 15 with its JavaScript interpreter.
Attack Phase. We then ensure that the CPU cache contains
our malicious Intl.Locale object (Line 6). We set the two indexed
properties of malObj to be a fake string length and the address of
the contents we wish to leak (Line 7).1 As malObj is split between
two cache lines, we can evict its StructureID while keeping its
butterfly pointer cached (See Section 5.3), which we do on Line 8.
We then proceed to call gadget() on malObj.
Speculative Type Confusion. With the StructureID evicted,
the CPU fails to retrieve the length property (Line 14), leading it
to speculate the if as a consequence of mistraining. As the code at
Line 15 is specialized to use Listing 3, calling gadget() on malObj
results in a type confusion where the CPU dereferences and returns
the value of addr. We then transmit (Line 16) this value over the
pLRU channel.
Speculative Suppression. As Line 15 was executed specula-
tively, JavaScript cannot retrieve the length property of malObj
while StructureID is evicted. Once the value of malObj.length
is architecturally available however, the CPU rolls back the incor-
rect speculation at Lines 15 – 16. Thus, speculative suppression
prevents Safari from de-specializing the memory access at Line 15
1Recall that these values must be encoded as IEEE-754 floats, as explained in Figure 8.

11

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom

or producing a type error event, allowing us to keep on repeating
the attack across multiple addresses.
Value Recovery. Finally, we have to retrieve the value stored
at addr, which was transmitted through the pLRU channel (Line
16 of Listing 4). Here, we simply rely on the pLRU channel for this
(Line 11), calibrating it for Safari’s 1 ms timer, see Section 2.6.

5.5 End-to-End Attack Evaluation
Having described the collection of techniques to build our attack,
we now proceed to evaluate its leakage rate and accuracy across
a variety of Apple devices. More specifically, we run iLeakage on
unmodified Safari and try to read a known 512-bit string, averaging
accuracy over 10 trials. Table 4 contains a summary of our findings,
showing that our attack can read arbitrary address at a rate of 24
to 34 bits per second, with an accuracy of 90% to 99%.

Device Apple CPU Leak Rate Accuracy
iPad Pro 11" 2nd Gen. A12Z Bionic 23.22 b/s 97.36 %
iPhone 11 A13 Bionic 28.89 b/s 99.18 %
iPhone 12 A14 Bionic 33.13 b/s 98.96 %
iPad Pro 12.9" 5th Gen. M1 34.78 b/s 99.57 %
iPhone 13 A15 Bionic 26.29 b/s 95.92 %
MacBook Air (M1, 2020) M1 32.97 b/s 98.48 %
MacBook Pro (14", 2021) M1 Pro 33.28 b/s 90.96 %
MacBook Pro (14", 2021) M1 Max 24.46 b/s 93.79 %
MacBook Air (M2, 2022) M2 29.14 b/s 97.05 %

Table 4: End-to-end performance of iLeakage.

6 WEAPONIZING ILEAKAGE
We now turn our attention to the implications of iLeakage on the
security of the Safari web browser.
Experimental Setup. We use a MacBook Air (model A2337)
with the M1 CPU and 16 GB of RAM for all attack experiments. We
run Safari in an out-of-the-box configuration, with all side-channel
countermeasures enabled.
Bringing Targets to Attackers. We begin by recalling that
while Safari generally follows a strict process-per-tab model, pages
opened by the window.open function share a rendering process
with the parent page. Thus, we created an attacker page that binds
window.open to an onmouseover event listener, allowing us to open
any webpage in our address space whenever the target has their
mouse cursor on the page. We note that even if the target closes
the opened page, the contents in memory are not scrubbed immedi-
ately, allowing our attack to continue disclosing secrets. Finally, as
window.open performs consolidation regardless of the origins of
both the parent and opened webpages, we host our attacker’s page
on a non-publicly accessible webserver, while using window.open
to consolidate pages from other domains.
Attacking Gmail. With Google being one of the world’s largest
email providers, it is highly likely for a target to be signed in with
their personal account. By having the event listener inside the
attacker’s page access execute window.open(gmail.com), we can
consolidate the target’s inbox view into the attacker’s address space.
We then leak the contents of the target’s inbox, see Figure 11.
Recovering Android Text Messages. Android users can send
and receive text messages from a browser window by pairing their
phone with Google’s Messages platform. Thus, by opening Google
Messages using window.open(), we can recover a target’s text
messages without attacking their mobile phone itself. See Figure 12.

Figure 11: (Top) An email displayed in Gmail’s web view.
(Bottom) Recovered sender address, subject, and content.

Figure 12: (Top) Textmessage sent to anAndroid phonewhich
has been paired to the Google Messages webpage. (Bottom)
Recovered text message in highlights.

IP Address and Geolocation. Finally, an attacker might decide to
open a website the target does not normally visit, in order to learn
more information about the targeted user. For example, in case
the attacker does not have access to server logs for their malicious
page (e.g., due to hosting on third party servers), the attacker can
open an IP address geolocation page and subsequently recover the
target’s location, IP and ISP details. See Figure 13.

Figure 13: (Top) Website displaying the target’s IPv4 and
IPv6 addresses. (Bottom) Recovered information from the
website’s DOM in highlights, including geolocation.

Attacking Password Managers. Going beyond reading website
content, the popularity of password managers also allows us to go
after login credentials of popular websites. More specifically, we
installed LastPass version 4.107.1 (the latest at the time of writing)
on our Safari browser. Next, while LastPass requires user interac-
tion when autofilling credentials for the first time on a webpage, it
automatically and permanently fills them in on subsequent logins
without any interaction. Thus, by opening the login pages of pop-
ular websites (prompting LastPass to autofill credentials), we can
recover the target’s username and password. See Figure 14.
Forced Logout to Induce Login Page. To steal credentials,
an attacker must first prompt a credential manager to autofill the
target’s password. Thus, when the target is already authenticated
for a service, we must somehow log the target out to access the
service’s login screen subsequently, thereby triggering password
autofills. Here, we observe that logout operations on most services
do not require knowing any user-specific information or solving
challenges (e.g., CAPTCHAs). Thus, an attacker can recover creden-
tials from Amazon, GitHub, and Google by first sending an AJAX

12

iLeakage: Browser-based Timerless Speculative Execution Attacks on Apple Devices CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Figure 14: (Top) Google’s accounts page autofilled by LastPass,
where the password is googlepassword. (Bottom) Leaked page
data with credentials highlighted.

request in JavaScript to the logout endpoints of each service, then
opening the login pages via our window.open technique.

7 DISCUSSION
Observing the practicality of our end-to-end attack, we now discuss
countermeasures to iLeakage, including Apple’s efforts during the
responsible disclosure process. We also state iLeakage’s limitations
and high-level takeaways from our attack primitives, some of which
are applicable to other browser engines and vendors.

7.1 Countermeasures for Safari
Throughout Section 5, our attack leveraged facets in Safari’s multi-
process architecture and performance optimizations. We now dis-
cuss several countermeasure designs for closing these loopholes.
Preventing Consolidation via Site Isolation. Recall We-
bKit’s process model (Section 5.1), where pages launched with
window.open are consolidated into the address space of their par-
ent’s rendering process. While this is sensible for real-world uses
of window.open such as popups, as they need communication with
their parent page, this design made our attack possible.

Following our disclosure, Apple developed a new inter-process
communication API that makes spawning new processes for pages
launched with window.open possible, in addition to pages opened
in new tabs. We have empirically verified this mitigates our attack
by preventing consolidation of domains across security boundaries.
That is, while the speculative JavaScript sandbox escape is still
possible, an attacker becomes limited to reading their own address
space and therefore their own data. Finally, at the time of writing,
Apple’s patch is publicly available [57] and is implemented in Safari
Technology Preview versions 173 and newer [58].
Preventing Speculation Past Type Checks. In Section 5.2
we constructed a 64-bit read primitive by confusing the CPU to
assume the input is a string object, while in reality the input is
an Intl.Locale object. WebKit’s JIT compiler can be hardened
against type confusion attacks by inserting a fence instruction after
every type check to prevent the CPU from speculating past it.
Removing Poisoning Optimizations. Also in Section 5.2, we
were able to fake a 64-bit pointer by abusing an optimization where
WebKit would not poison floats in an array of floats, instead encod-
ing that information in the array’s type information. As our attack
demonstrates, this is risky in the face of speculative type confusion.
Thus, while poisoning all floating-point numbers would not prevent
speculative type confusion itself, it would prevent an attacker from
reading the address space by using floats to craft 64-bit pointers.
Yet, this comes with performance tradeoffs: every computation on a

poisoned variable must be preceded by unpoisoning and succeeded
by repoisoning when writing the result back to memory.

7.2 Countermeasures for Websites
As full site isolation in Safari is under active development by Ap-
ple, we now discuss a countermeasure available to website ad-
ministrators for mitigating our attack. Here, web pages can serve
cross-origin isolation (COI) HTTP headers with website endpoints
containing secrets. We recall from Section 2.5 and Section 5.1 that
COI was proposed as a Spectre countermeasure for websites, and
pages with COI failed to consolidate in Safari.

COI consists of two HTTP headers: Cross-Origin-Opener-Policy
(COOP) set to same-origin, and Cross-Origin-Embedder-Policy
(COEP) set to require-corp. COOP states the current webpage must
not be able to communicate with other pages, while COEP requires
third-party resource to explicitly opt into being loaded on the cur-
rent webpage [39]. In current release versions of Safari, we identify
that the presence of the correct COOP header is alone for WebKit
to spawn the webpage in a new process.
Measuring COI Adoption. Accordingly, we measure how widely
popular websites have adopted COI or the COOP header. We take
the Alexa top-100 websites, and also visit every URL linked from
the main page of each website. On each URL, we check the HTTP
headers across four user agents: {Safari 16.0, Chrome 105} for {ma-
cOS, iOS}. For both browsers, we crawled 3,058 URLs for macOS and
2,551 for iOS (some hyperlinks are not included in mobile versions
of webpages) for a total of 5,609 URLs. Finally, our web crawler did
not visit webpages that require authentication.
Results. At the time of writing, we find that only 113 of 5,609
URLs (2%) serve the COOP header with the correct value. Matching
these 113 URLs to their corresponding Alexa top 100 websites, we
find that 13 websites serve the COOP header at some page in their
domain, thus resulting in a 13% adoption rate. Also, we find the user
agent influences whether a server includes either header for some
websites, depending on if the client is desktop or mobile. While
COI has corner cases with website compatibility which we describe
in Appendix C, we recommend websites handling secrets to opt-in.

7.3 Limitations

Leak Rate. As shown in Table 4, our attack recovers data at rate
of about 30 bits per second. While our attack’s bottleneck is the
transmission rate of pLRU covert channel with Safari’s 1ms timer,
we do acknowledge our attack’s relatively low leakage. Thus, we
leave designing high speed covert channels that are robust enough
to use low resolution timers to future work.
Inability to Cross Address Spaces. Being a Spectre-style attack,
iLeakage cannot read information present in other address spaces.
While early versions of Apple hardware were susceptible to Melt-
down [4], there is no indication of such vulnerabilities in newer
Apple CPUs. We thus leave the task of exploring cross-address
space attacks on modern Apple silicon to future work.

7.4 Broader Implications
We now discuss the components of our attack which are transfer-
able to other platforms, and offer general takeaways for designing
memory-safe browser engines in the face of speculative execution.

13

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom

Transferability. As all iOS-based browsers are mandated to use
WebKit as their underlying engine by Apple’s App Store policy,
the end-to-end exploit chain of iLeakage affects all iOS browsers
beyond Safari. Furthermore, beyond the Apple ecosystem, some
of Samsung’s mobile and embedded devices use the Tizen operat-
ing system, whose default bundled browser uses WebKit. As the
CPUs and overall architecture of Samsung devices is significantly
different from Apple platforms considered in this paper, we leave
the task of investigating these devices to future work. Finally, our
microarchitectural primitives, such as the timerless cache hit/miss
distinguisher gadget using race conditions, are agnostic to browser
engine, as we have shown with our timerless Spectre-v1 proof-of-
concept (PoC) on Firefox and Tor Browser in Section 4.6.
Memory Safety Under Speculation. Both the Spectre-v1 PoCs
and the end-to-end Safari exploit were made possible when assump-
tions about memory safety that hold true architecturally failed to
hold under speculation. While it is well known that assuming vari-
ables will be in-bounds following a length check leads to Spectre-v1,
we uncover more assumptions and implementation details which
warrant re-evaluation. More specifically, while Safari’s design is
sufficient to prevent architectural type confusion, our work shows
that speculative type confusion is still possible. Thus, we argue
that speculative memory safety must be considered separately from
architectural memory safety during system design.

Firstly, assuming objects will be of the correct type following a
checkmay lead to sandbox escapes, even in the presence of standard
Spectre countermeasures. Secondly, implementing optimizations or
corner cases based on type may also become affected by misspec-
ulations on type checks, even if they guarantee perfect security
under architectural execution. Finally, making allocations such that
attributes of objects which are essential to memory safety (e.g., type
or length) map to a different cache line than the data of objects is
risky, as the CPU can speculate past these safety checks when the
object is partially evicted.

8 CONCLUSION
In this paper, we study the side-channel resilience of recent Ap-
ple CPUs. Overcoming the lack of high-resolution timers in both
native environments and JavaScript in the Safari web browser, we
introduce primitives to mount cache attacks on degraded timers
and notably without timers, after empirically measuring the cache
organization, inclusiveness, and speculation depth. Furthermore,
we show these primitives are transferable with Spectre-v1 proof-
of-concepts in several browsers, and present algorithmic improve-
ments for finding eviction sets with our new timing primitives.
Subsequently, we show that numerous architectural invariants for
memory safety in Safari’s design and implementation break under
speculation, resulting in an end-to-end speculative type confusion
primitive with arbitrary 64-bit read capabilities. We demonstrate
the practicality and severity of this attack with popular real-world
scenarios and targets. Finally, we suggest several mitigations and
takeaways for web browser vendors.

ACKNOWLEDGMENTS
This research was supported by the Air Force Office of Scientific
Research (AFOSR) under award number FA9550-20-1-0425; an ARC
Discovery Early Career Researcher Award DE200101577; an ARC

Discovery Project number DP210102670; the Defense Advanced
Research Projects Agency (DARPA) under contract HR00112390029,
the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972; the National Science Foundation under grant
CNS-1954712; and a gift by Cisco and Qualcomm.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Government.

REFERENCES
[1] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel Genkin,

Eyal Ronen, and Yuval Yarom. 2022. Spook.js: Attacking Chrome Strict Site
Isolation via Speculative Execution. In IEEE SP.

[2] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,
and Hovav Shacham. 2015. On Subnormal Floating point and Abnormal Timing.
In IEEE SP.

[3] Apple. 2011. WebKit2. https://trac.webkit.org/wiki/WebKit2.
[4] Apple. 2018. About speculative execution vulnerabilities in ARM-based and Intel

CPUs. https://support.apple.com/en-us/HT208394.
[5] Apple. 2021. xnu/osfmk/arm/kpc_arm.c. https://github.com/apple-oss-

distributions/xnu/blob/e6231be02a03711ca404e5121a151b24afbff733/osfmk/
arm/kpc_arm.c.

[6] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch history injection: On the effectiveness of hardware mitigations
against cross-privilege Spectre-v2 attacks. In USENIX Security.

[7] Eloi Benoist-Vanderbeken and Fabien Perigaud. 2019. WEN ETA JB? A 2 million
dollars problem.

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTher-
Spectre: Exploiting Speculative Execution through Port Contention. In CCS.

[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo
Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant
CPUs. In CCS.

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
Systematic Evaluation of Transient Execution Attacks and Defenses. In USENIX
Security.

[11] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang,
XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. 2018. Racing in hyperspace:
Closing hyper-threading side channels on sgx with contrived data races. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 178–194.

[12] Intel Corporation. 2021. Intel Transactional Synchronization Extensions
(Intel TSX) Memory and Performance Monitoring Update for Intel Proces-
sors. https://www.intel.com/content/www/us/en/support/articles/000059422/
processors.html.

[13] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuffrida,
and Kaveh Razavi. 2021. SMASH: Synchronized Many-sided Rowhammer Attacks
from JavaScript. In USENIX Security.

[14] Alexis Deveria. 2022. Shared Array Buffer | Can I use... Support tables for HTML5,
CSS3, etc. https://caniuse.com/sharedarraybuffer.

[15] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017. Prime +
Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In USENIX
Security.

[16] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. Branchscope: A new side-channel attack on directional branch
predictor. In ASPLOS.

[17] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand
Pwning Unit: Accelerating Microarchitectural Attacks with the GPU. In IEEE SP.

[18] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-By
Key-Extraction Cache Attacks from Portable Code. In ACNS.

[19] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. 2020. Speculative probing: Hacking blind in the Spectre era. In CCS.

[20] Google. 2021. Spectre. https://leaky.page.
[21] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.

ASLR on the Line: Practical Cache Attacks on the MMU.. In NDSS.
[22] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A

Remote Software-Induced Fault Attack in JavaScript. In DIMVA.
[23] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: a fast and stealthy cache attack. In DIMVA.
[24] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache games–

Bringing access-based cache attacks on AES to practice. In IEEE SP.

14

https://trac.webkit.org/wiki/WebKit2
https://support.apple.com/en-us/HT208394
https://github.com/apple-oss-distributions/xnu/blob/e6231be02a03711ca404e5121a151b24afbff733/osfmk/arm/kpc_arm.c
https://github.com/apple-oss-distributions/xnu/blob/e6231be02a03711ca404e5121a151b24afbff733/osfmk/arm/kpc_arm.c
https://github.com/apple-oss-distributions/xnu/blob/e6231be02a03711ca404e5121a151b24afbff733/osfmk/arm/kpc_arm.c
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://caniuse.com/sharedarraybuffer
https://leaky.page

iLeakage: Browser-based Timerless Speculative Execution Attacks on Apple Devices CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[25] Gregor Haas, Seetal Potluri, and Aydin Aysu. 2021. iTimed: Cache attacks on
the apple a10 fusion SoC. In 2021 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 80–90.

[26] Noam Hadad and Jonathan Afek. 2018. Overcoming (some) Spectre browser mit-
igations. https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/.

[27] LorenzHetterich andMichael Schwarz. 2022. BranchDifferent-Spectre Attacks on
Apple Silicon. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 116–135.

[28] Jann Horn. 2018. Speculative Execution, Variant 4: Speculative Store Bypass.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528.

[29] IEEE Standard Board. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std
754-2008. IEEE. https://doi.org/10.1109/IEEESTD.2008.4610935

[30] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache
Attack that Works Across Cores and Defies VM Sandboxing–and its Application
to AES. In IEEE SP.

[31] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu,
Thomas Eisenbarth, and Berk Sunar. 2019. SPOILER: Speculative Load Hazards
Boost Rowhammer and Cache Attacks. In USENIX Security.

[32] Dougall Johnson. 2021. Apple M1 microarchitecture research. https://dougallj.
github.io/applecpu/firestorm-int.html.

[33] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen,
and Yuval Yarom. 2023. The gates of time: Improving cache attacks with transient
execution. In USENIX Security.

[34] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel.
2016. A High-Resolution Side-Channel Attack on Last-Level Cache. In DAC.

[35] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. arXiv preprint arXiv:1807.03757 (2018).

[36] Ofek Kirzner and Adam Morrison. 2021. An Analysis of Speculative Type Confu-
sion Vulnerabilities in the Wild. In USENIX Security.

[37] Eiji Kitamura. 2022. Load cross-origin resources without CORP headers using
‘COEP: credentialless‘. https://developer.chrome.com/blog/coep-credentialless-
origin-trial/.

[38] Eiji Kitamura. 2022. Making your website "cross-origin isolated" using COOP
and COEP. https://web.dev/coop-coep/.

[39] Eiji Kitamura and Domenic Denicola. 2021. Why you need "cross-origin isolated"
for powerful features. https://web.dev/why-coop-coep/.

[40] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In IEEE SP.

[41] David Kohlbrenner and Hovav Shacham. 2016. Trusted browsers for uncertain
times. In USENIX Security.

[42] David Kohlbrenner andHovav Shacham. 2017. On the Effectiveness ofMitigations
Against Floating-Point Timing Channels. In USENIX Security.

[43] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks Using the Return
Stack Buffer. In WOOT.

[44] Daniel Lemire. 2021. Counting Cycles and Instructions on the Apple M1 Pro-
cessor. https://lemire.me/blog/2021/03/24/counting-cycles-and-instructions-on-
the-apple-m1-processor/.

[45] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Maurice,
and Daniel Gruss. 2020. Take a way: Exploring the security implications of
AMD’s cache way predictors. In Asia CCS.

[46] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security.

[47] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In IEEE SP.

[48] Andrei Lutas and Dan Lutas. 2019. Security Implications of Speculatively Execut-
ing Segmentation Related Instructions on Intel CPUs. https://businessresources.
bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf.

[49] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In CCS.

[50] Hector Martin. 2021. M1ssing Register Access Controls Leak EL0 State. https:
//m1racles.com/.

[51] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. CoRR abs/1902.05178.

[52] MDN Contributors. 2022. performance.now() - Web APIs - MDN.
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now#
reduced_time_precision.

[53] Mozilla. 2021. Project Fission. https://wiki.mozilla.org/Project_Fission.
[54] Nick Nguyen. 2017. The Best Firefox Ever. https://blog.mozilla.org/blog/2017/06/

13/faster-better-firefox/.
[55] Ryosuke Niwa. 2018. Reduce the precision of "high" resolu-

tion time to 1ms. https://github.com/WebKit/WebKit/commit/
25e575313d12e97a9e6c2b1d9b6ddd1d510e01a9.

[56] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications. In CCS.

[57] Pascoe. 2023. Process swap on cross-site window.open behind a flag. https:
//github.com/WebKit/WebKit/pull/10169.

[58] Pascoe. 2023. Replace ProcessPoolConfiguration SPI with yaml-generated run-
time flag for enabling window.open process swap. https://github.com/WebKit/
WebKit/commit/caba77f65b6ccee5ab9eb1d37889a80436cf2dae.

[59] Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCan.
[60] Antoon Purnal, Marton Bognar, Frank Piessens, and Ingrid Verbauwhede. 2023.

ShowTime: Amplifying Arbitrary CPU Timing Side Channels. In ACM AsiaCCS
2023.

[61] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+Scope:
Overcoming the observer effect for high-precision cache contention attacks. In
CCS.

[62] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. 2021. Rage
Against the Machine Clear: A Systematic Analysis of Machine Clears and Their
Implications for Transient Execution Attacks. In USENIX Security.

[63] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2021. Crosstalk: Speculative data leaks across cores are real. In IEEE SP.

[64] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022. PACMAN:
Attacking Arm Pointer Authentication with Speculative Execution. In ISCA.

[65] Charles Reis, Adam Barth, and Carlos Pizano. 2009. Browser Security: Lessons
from Google Chrome: Google Chrome developers focused on three key problems
to shield the browser from attacks. Queue 7, 5 (2009), 3–8.

[66] Charles Reis, AlexanderMoshchuk, and Nasko Oskov. 2019. Site isolation: process
separation for web sites within the browser. In USENIX Security.

[67] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. 2017.
Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural
Attacks in JavaScript. In Financial Cryptography and Data Security.

[68] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,
and Yuval Yarom. 2021. Prime + Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses. In USENIX Security.

[69] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through the
Cache Occupancy Channel. In USENIX Security.

[70] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register State
using Microarchitectural Side-Channels. arXiv preprint arXiv:1806.07480 (2018).

[71] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel Genkin, and
Yuval Yarom. 2023. Hot Pixels: Frequency, Power, and Temperature Attacks on
GPUs and ARM SoCs. In USENIX Security.

[72] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security.

[73] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking Transient Execution through Microarchitectural Load Value
Injection. In IEEE SP.

[74] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018.
Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder
Than You Think. In USENIX Security.

[75] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020.
SGAxe: How SGX fails in practice. https://sgaxe.com/files/SGAxe.pdf.

[76] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. Rogue
In-flight Data Load. In IEEE SP.

[77] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. 2021. CacheOut: Leaking Data on Intel CPUs via Cache Evictions. In
USENIX Security.

[78] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella, Grant
Garrett-Grossman, AdamMorrison, ChristopherW. Fletcher, and David Kohlbren-
ner. 2022. Augury: Using Data Memory-Dependent Prefetchers to Leak Data at
Rest. In IEEE SP.

[79] Pepe Vila, Boris Köpf, and José F Morales. 2019. Theory and practice of finding
eviction sets. In IEEE SP.

[80] YoavWeiss and Eiji Kitamura. 2021. Aligning timers with cross origin isolation re-
strictions. https://developer.chrome.com/blog/cross-origin-isolated-hr-timers/.

[81] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient
Out-of-order Execution. https://foreshadowattack.eu/foreshadow-NG.pdf.

[82] Johannes Wikner, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2022.
Spring: Spectre Returning in the Browser with Speculative Load Queuing and
Deep Stacks. In WOOT.

[83] Johannes Wikner and Kaveh Razavi. 2022. RETBLEED: Arbitrary Speculative
Code Execution with Return Instructions. In USENIX Security.

15

https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://doi.org/10.1109/IEEESTD.2008.4610935
https://dougallj.github.io/applecpu/firestorm-int.html
https://dougallj.github.io/applecpu/firestorm-int.html
https://developer.chrome.com/blog/coep-credentialless-origin-trial/
https://developer.chrome.com/blog/coep-credentialless-origin-trial/
https://web.dev/coop-coep/
https://web.dev/why-coop-coep/
https://lemire.me/blog/2021/03/24/counting-cycles-and-instructions-on-the-apple-m1-processor/
https://lemire.me/blog/2021/03/24/counting-cycles-and-instructions-on-the-apple-m1-processor/
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf
https://m1racles.com/
https://m1racles.com/
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now#reduced_time_precision
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now#reduced_time_precision
https://wiki.mozilla.org/Project_Fission
https://blog.mozilla.org/blog/2017/06/13/faster-better-firefox/
https://blog.mozilla.org/blog/2017/06/13/faster-better-firefox/
https://github.com/WebKit/WebKit/commit/25e575313d12e97a9e6c2b1d9b6ddd1d510e01a9
https://github.com/WebKit/WebKit/commit/25e575313d12e97a9e6c2b1d9b6ddd1d510e01a9
https://github.com/WebKit/WebKit/pull/10169
https://github.com/WebKit/WebKit/pull/10169
https://github.com/WebKit/WebKit/commit/caba77f65b6ccee5ab9eb1d37889a80436cf2dae
https://github.com/WebKit/WebKit/commit/caba77f65b6ccee5ab9eb1d37889a80436cf2dae
https://sgaxe.com/files/SGAxe.pdf
https://developer.chrome.com/blog/cross-origin-isolated-hr-timers/
https://foreshadowattack.eu/foreshadow-NG.pdf

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom

[84] John Wilander. 2017. Intelligent Tracking Prevention. https://webkit.org/blog/
7675/intelligent-tracking-prevention/.

[85] Haocheng Xiao and Sam Ainsworth. 2022. Hacky Racers: Exploiting Instruction-
Level Parallelism to Generate Stealthy Fine-Grained Timers. arXiv preprint
arXiv:2211.14647 (2022).

[86] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security.

[87] Andy Zeigler. 2008. SharedArrayBuffer updates in Android Chrome 88 and
Desktop Chrome 91. https://docs.microsoft.com/en-us/archive/blogs/ie/ie8-and-
loosely-coupled-ie-lcie.

[88] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz. 2023. (M)
WAIT for It: Bridging the Gap between Microarchitectural and Architectural Side
Channels. In USENIX Security.

A MULTI-PROCESS WEB BROWSERS
Modern browsers employ a multi-process architecture with unpriv-
ileged rendering processes for each webpage [3, 54, 65, 87]. These
effectively compartmentalize the browser, limiting the damage done
in case of an exploit inside the browser’s rendering engine. Instead
of grouping pages arbitrarily, Site Isolation [66] uses the page’s
URL, aiming to separate domains from each other. Spectre’s dis-
covery [40] further accelerated the deployment of site isolation, in
an attempt to create address space separation between data from
mutually-distrusting domains.
eTLD+1 Consolidation. Site isolation in Chrome and Firefox
groups websites into rendering processes based on their effective
top-level domain plus one subdomain (eTLD+1). More specifically, a
rendering process will only handle websites that share their eTLD+1.
For example, example.com and example.net will be housed in
different rendering processes, as their top-level-domains, .net and
.com, are different. Likewise, target.com and attacker.com are
also separated, as their first sub-domains (example and attacker) are
different. Finally, store.bigbiz.com and accounts.bigbiz.com
might share a rendering process, since they both share the same
eTLD+1, bigbiz.com.

B SAFARI’S OBJECT LAYOUT
Safari is a 64-bit application running on 64-bit hardware. Despite
this, Safari uses 32-bits to represent array indices, and 35-bits (which
can address 32GB) to represent a compressed pointer to the But-
terfly, which is the underlying storage holding the array data. The
underlying storage for most JavaScript objects is allocated in an iso-
lated 32GB region of the rendering process’s address space named
the Gigacage. For example, array indexing happens by taking a
64-bit constant holding the base address of the Gigacage, adding
the 35-bit butterfly pointer to it to obtain the array’s base address,
and then adding the 32-bit offset. See Figure 15. Even in a memory
corruption attack, as all variables in the address computation are at
most 35-bits, an attacker cannot escape the Gigacage, leaving the
rest of the address space of the rendering process out of reach [7].
Indeed, we find that DOM secrets do not reside in the Gigacage,
putting them out of reach for Spectre-v1 attackers.

Figure 15: Layout of the JSCell class holding the metadata
for JavaScript objects, and address computation for array
indexing in Safari. The resulting address is confined to the
Gigacage.

C SHORTCOMINGS OF CROSS-ORIGIN ISOLA-
TION

COOP is problematic for many webpages offloading user-specific
functionality to third parties, such as federated logins or payment
processing, as it prohibits cross-window communication. To ad-
dress this, W3C has suggested allowing COI webpages to open
popups [38], though such an extension has not yet been codified.
Also, COEP prohibits news and media websites from loading im-
ages from a CDN, as the image must opt into every such site. In
response, COI is being updated with a ‘credentialless’ mode [37] to
allow unauthenticated cross-origin requests. However, only Google
Chrome and Microsoft Edge currently support this.

16

https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://docs.microsoft.com/en-us/archive/blogs/ie/ie8-and-loosely-coupled-ie-lcie
https://docs.microsoft.com/en-us/archive/blogs/ie/ie8-and-loosely-coupled-ie-lcie

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Ethics and Artifact Availability

	2 Background
	2.1 Caches and Cache Attacks
	2.2 Speculative and Out-of-Order Execution
	2.3 Side Channel Attacks on Apple CPUs
	2.4 Side Channel Attacks in Web Browsers
	2.5 Timing Sources on Apple CPUs
	2.6 Timer-Friendly Covert Channels

	3 Threat Model
	4 Microarchitectural Primitives
	4.1 [P1]: Cache Organization
	4.2 [P2]: Measuring Speculation Depth
	4.3 [P3]: Discerning Cache Hits From Misses
	4.4 [P4]: Constructing Minimal Eviction Sets
	4.5 [P5]: Testing for L2 Inclusiveness
	4.6 [P6]: Timerless Spectre Attacks

	5 Attacking the Safari Browser
	5.1 [C1]: Bypassing Process Isolation
	5.2 [C2]: Speculative Type Confusion
	5.3 [C3]: Partial Object Eviction
	5.4 [C4]: Speculative Suppression
	5.5 End-to-End Attack Evaluation

	6 Weaponizing iLeakage
	7 Discussion
	7.1 Countermeasures for Safari
	7.2 Countermeasures for Websites
	7.3 Limitations
	7.4 Broader Implications

	8 Conclusion
	References
	A Multi-Process Web Browsers
	B Safari's Object Layout
	C Shortcomings of Cross-origin Isolation

